Diese Website verwendet Cookies, damit wir dir die bestmögliche Benutzererfahrung bieten können. Cookie-Informationen werden in deinem Browser gespeichert und führen Funktionen aus, wie das Wiedererkennen von dir, wenn du auf unsere Website zurückkehrst, und hilft unserem Team zu verstehen, welche Abschnitte der Website für dich am interessantesten und nützlichsten sind.
Poster Presentation: USCAP 2022
Study Objective: To clinically validate the performance of an AI-based algorithm in the detection of gastric adenocarcinoma (AdC), high-grade (HG) dysplasia, and Helicobacter pylori (H. pylori), and to implement it in routine clinical workflow.
Conclusions:
- Galen Gastric (AI) demonstrated accurate detection of a broad range of pathological features in clinical use, including adenocarcinoma, HG dysplasia, H.pylori, being an effective and user-friendly diagnostic support tool for pathologists,
- The AI-powered Galen Gastric proposes a more cost-effective diagnosis workflow, enabling efficient detection of Helicobacter pylori together with reduction in turnaround time and minimizing ordering of additional stains.
- AI enables accurate detection of multiple pathological features beyond cancer detection, such as adenoma, LG dysplasia, neuroendocrine neoplasms and more.
